Friday 13 January 2023

Triad Chords as a "nice noise" (From Plankton to Puccini)

20 years ago, when the Lindsay string quartet retired from Manchester University, Ian Kemp - who had been an inspirational musical figure for me and so many others - returned from retirement to conduct a last "Lindsay session", playing Beethoven and Tippett (which was the favourite diet). Although Ian complained that he was "bad at hearing", his musical intellect remained sharp as tack. 

There was a passage in the music (I think it must have been Tippett) which was very unusual. So he asked, in his typical way, "what's going on here?". By this time, University academics of Kemp's temperament were very rare, and they had been replaced with younger people who were eager to please and were full of "musical analysis terminology". So Ian's question prompted much impressive-sounding jargon. "Perhaps," he said on hearing this, "but maybe it's just a nice noise". 

So what is a nice noise? We hear, with Western ears at least, the major triad as the epitome of musical consonance - a nice noise. It is a resting place, and the tonal geometric relations that form around the triad provide us not only with the "nice noise" of the chord itself, but an unfolding diachronic (and diatonic) space with which we can engineer a sense of arrival and homecoming in tonal music. 


When we learn about triads, we are introduced to the notation, and young pianists are taught how to shape their hands. But something gets added in both these cases. The triad is never "just" the notes. It is never "just the hand-shape". If it was "just the notes", then playing a triad with sine waves would be as satisfying as playing it on the piano. But it isn't - and this is my point: the triad's beauty lies in what occurs outside the notes. It lies in the noise that surrounds it. 

So much of music analysis manages to miss the music. I strongly suspect that Kemp's "nice noise" comment hit the music on the nose. Part of the key to understanding this (pardon the pun) lies in inspecting the relationship between a triad and a note.

Marina Frolova-Walker's fascinating lecture on the triad (see (38) Triads, Major and Minor - YouTubeP includes a nice demonstration of the overtone series and how this relates to the triad. But if we play a note and analyse its harmonics, we see the different harmonics at a couple of octaves above the fundamental note. If we add another note a third above the original note, what actually happens is the overall frequencies become "noisier" - there is a tussle between two fundamental notes which are nevertheless connected. 

Marina does say something about the experience of early musicians in hearing the consonance between two notes. This must have been fascinating and puzzling, because perception struggles to piece together the coherence of sounds which on the one hand interfere with each other, and on the other, agree with each other. The recursive operations of consciousness in the face of this oscillation is possibly comparable to the way that early art features recursive geometric tiling patterns (across many different cultures across the world)

Just as with the oscillations of perception with a tiling pattern, the oscillations of perception with a triad creates a dynamic dance between noise and consonance. As Marina illustrates at the beginning of her talk, Wagner completely understands and demonstrates this dance at the beginning of The Ring. 

The consonance of the triad is not static - it moves. But it moves in a way in which perception becomes fascinated. Understanding this also helps to explain why not everybody in the world has the same music. The issue is not about consonance and dissonance - it is about the relationship between stability, order and noise. Western harmony is one way of managing a dance between these factors, but it depends on particular kinds of social relation which reflect the society that favours that way of doing things. There are many others, just as there are many other kinds of society. 

The role of noise in creating order is much overlooked. Kemp's "nice noise", and the triad itself, is a dynamic relation between noise and order. An energy imbalance is inherent in the first note connecting the physiology of perception and action with the physics of sound. The noise around music is essential in driving forwards the process of unfolding immanent structures in the sound as more energy is produced, and the physiology of expectation adapts. 

I thought a while ago that there was a clear distinction between the synchronic aspects of music and the diachronic aspects. (I wrote about this here: Redundancies in the communication of music: An operationalization of Schutz's ‘Making Music Together’ - Johnson - 2021 - Systems Research and Behavioral Science - Wiley Online Library and here: Communicative Musicality, Learning and Energy: A Holographic Analysis of Sound Online and in the Classroom | SpringerLink). Now I think the synchronic aspects are much more dynamic than I realised. The ancient and medieval theorists who spoke of the divisions of the string and the harmonics ignored the role that perception plays in appreciating the beauty of "real" music, as opposed to mere mathematical relations. But now I see (and hear) that what happens to perception in the experience of the structure of sound is just as dynamic as what happens over time as sound develops. 

There is also something to say here about evolution, and the evolution of music. Michael Spitzer, with whom I've had the privilege of some detailed conversations recently alongside the biologist John Torday, has suggested that music is fundamentally connected to the ocean. He asked me a few weeks ago, after I'd given a talk on "music and epigenetics" about how the primeval ocean connects to Beethoven. It's a great question. Now, I think I would say that the ocean is a noisy environment (Michael says it is the most sonically rich environment on earth). The developmental process of life concerns the continual generation of order (negentropy). What do we need for this order-producing process? Information - in the form of selection is one thing. Constraint is the flip-side of information, and this is also required (technically, this is known as redundancy). But noise is critical. It's only with noise that the latent structures of organisms - from cells upwards - can be "shaken" into finding new ordered configurations. It's the same process - from plankton to Puccini! 

No comments: