Saturday 24 October 2020

Making Online Learning Dance in an International Social Operating System

At the end of the Global Scientific Dialogue course at the Far Eastern Federal University, most of the students I spoke to said that being online didn't really affect their learning - indeed, for some, it was preferable to face-to-face learning. What they liked about the course is basically the same as what students tend to like most about most courses - working with friends, rich conversation, and sharing their enthusiasms for things with others. We tried hard to create this environment of group-work and sharing when we first designed the course 3 years ago for face-to-face delivery. It is quite different online, but this aspect of it has been preserved - and it was very gratifying to hear the reception. The role of the technology in this cannot be overstated - and there is something powerful and new in Microsoft Teams... it feels like an International Social Operating System... but more on that in a second.

If we really believe that conversation is the essence of learning, then the standard practices of much of the face-to-face curriculum cannot remain. Of course not all subjects deliver large lectures with masses of content - music and architecture stand out for me as the best subjects in the university - but far too many still rely on this mode of operation. It suits the teachers, and certainly suits the bums-on-seats managerialists, but doesn't do any favours for the learners. 

The online switch is revealing this more strongly. Global Scientific Dialogue, perhaps rather like music, is focused around tools and developing skills with tools. The content flows through the conversations and activities we get people to engage in as they explore the tools. It is personalised - everyone has their own experience, brings their own experience, and everyone has to make their own connections in developing their ideas. The truth is that this can be organised relatively easily and cheaply if the will is there to do it. 

Among the various noises about online learning during the pandemic has been the repeated claim by so-called experts that online learning is more expensive, more resource intensive, than face-to-face learning. Well - it is if you try to reproduce what you've been doing face-to-face! But why on earth would you want to do that? 

Of course, teachers in institutions are bound by institutional constraints and expectations about learning. But these constraints and expectations have formed around a bad theory of education. If we re-inspect our theory, we will find that the whole thing is much much simpler than the "constructive alignment" ideology, the learning outcomes, the quality measures which all but destroy innovation and creativity, and the assessment regimes that destroy conversations in the name of "academic integrity". The costs of education arise from our belief that these constraints represent what education is (grounded in "evidence" - another fallacy).

I've been incredibly lucky in Russia because I have had the confidence and backing of a senior management team who have been prepared to suspend judgement on things that are very different. In the UK our institutional stiffness in universities is much more deeply ingrained - partly, I think, because the layers of management that enforce it are threatened by the fact that real innovation in education would obviate their roles. The last thing anyone in a position of power wants to hear is an educational approach which simplifies everything to self-organisation and conversation.

But that is it. Being made to work online will make it more and more apparent to an increasingly large number of teachers and learners across the world. We can use the technology to do education and science better and cheaper - it's what the pioneers of educational technology always said from the beginning. We just don't need the layers of management and bureaucracy any more - just something to facilitate it. 

Education, when it's done well, is a dance. I'm really happy to have danced online in Vladivostok with some very talented learners and teachers. From our crazy improvised "orchestra" at the beginning, to the revealing of wonderful and diverse creative talents of learners expressed through our final "carnival" of presentations at the end, and rich conversations with a variety of experts in all kinds of disciplines in our "experts day", Global Scientific Dialogue has been a success and a revelation. The students produced wonderful stuff - highlights include two students - one in Russia, one in China, simultaneously trying to make a Mobius strip and cut it in half to make a trefoil knot, or students sharing their experiences of social media, or wonderful creativity in producing video (which many hadn't done before) and art.  

The technology too has been a revelation: Microsoft Teams is different from any other kind of educational technology we have had - and it is global, having consumed both education and industry over the last 8 months. It is our new international social operating system.  It will be with us for some time. Much as I distrust large tech corporations (they're all crooks, aren't they?), this may be a very good thing to happen to education at this juncture. 

Sunday 18 October 2020

Universities through the Looking-Glass: what challenges and opportunities does an online, global future for higher education present?

The pandemic for me has brought a period of very intense international collaboration. From weekly meetings with academic friends in the US and Europe, a large-scale online conference run as festival over the summer (, through to working with the Far Eastern Federal University in Russia on a radically different kind of pedagogy online. I'm thinking that as many universities switch their teaching to online-only, and more pessimistic noises are made about a vaccine, what if online becomes a more permanent arrangement? What might it mean? 

I've started to list a few points... 

  • Teachers will get better at it
  • Personal tutoring will really become one of the most important things the university does, and not just a tick-box exercise 
  • Technologies for supporting innovative pedagogy designed to work in the online space will improve. Learning platforms like VLEs will evolve from web-based Content Management Systems into collaborative and cooperative academic relationship management systems
  • New pedagogies and ways of assessment will be developed
  • Many of these new pedagogies will focus more on personalised education - partly because this will be found to be useful for individuals struggling to survive in a profoundly uncertain environment
  • Universities are likely to review the ways they design and approve new programmes to encourage more innovation
  • Many new pedagogies will focus less on content, and more on tools - skills to use new tools will become of paramount importance
  • Global opportunities presented by being online will be exploited: there is no reason not to have contributions to teaching made by professors from all around the world
  • Economic challenges will bring an impetus to cut costs - globalisation will assist this, when rates of pay in universities across the world vary so much, and computer systems are increasingly global, why not have your administration. or even some of your  faculty, based in China? Will new legislation be required to protect jobs?
  • The annual scholarly conference will evolve into more established global scholarly networks which will become active on a more regular basis online. There will be efforts to engage students in these events, and maybe even to establish new kinds of academic apprenticeship
  • Active scholarly networks and platforms which are more open and outward-facing will gradually replace journals as the dominant mechanism for scientific communication
  • Global citizen science, empowered by AI tools, will drive new approaches to research in topics ranging from environmental studies, health, sociology, psychology, physiology, education, management, law and many others.
  • Fundamental science - particularly research into physics and biology - will connect with a more progressive approach to educational practice and theory
  • The arts will be one of the principle beneficiaries of this, as the biological mechanisms underlying creative work and collaboration are better understood as engines of social progress. The obsession with STEM will end as the online world makes the need for the arts even more apparent.


Wednesday 14 October 2020

Microsoft Teams, Class Notebooks, 200 students and 11 teachers in Vladivostok

I'm currently delivering the 3rd year of the Global Scientific Dialogue course in Vladivostok with wonderful colleagues at the Far Eastern Federal University, led by Elena Suvorova.  We did it first face-to-face in 2018 (see This time it's online and in Microsoft Teams. I have to say, Teams feels like a real advance in educational technology. Yes, it's Microsoft, with all its big corporate evilness. But.. this is a new way of doing teaching and learning, because it is a different kind of technical architecture.  Since my day-job has involved rolling-out Canvas, that might seem a surprising thing to say. Canvas has some strong points (its API!), but it remains a web-based, centralised Content Management System. Which is fine... but it constrains the educational practice around content delivery.

Teams can work a bit like Canvas - you can use its file storage mechanisms to deliver content. And if you try to do this, you would think Canvas is much better because it makes things look prettier. But you'd be missing the point.

The best bits in Teams are the ways that it distributes documents to students (or other team members). Each individual gets their own personal copy of a document, but if you are a teacher, the student's document is also viewable and editable by you as a teacher. This is new. In a content-management system, the system administrator, or the person who "owns" the course, owns the documents (with perhaps a few exceptions). In Teams, the users own their documents.

Perhaps there's not as much user-ownership as I would like, but it's a start. What can we do with this educationally?

Well, first it means that each user-owned document is a vehicle for personal conversation and dialogue with a teacher - or even other learners. In order to take advantage of that, we need a pedagogy which promotes personalised learning.

Global Scientific Dialogue always aimed at personalised learning - the idea was to take students through a set of "rooms" with different activities, tools and objects to get them to reflect on their own learning needs, career wishes, etc. Face-to-face there was lots of post-it notes and flip-chart paper... which was fine (good in fact). But online it's better.

Now the course is focused on "tools". The content of the course, as much as there is any, is themed around using tools and understanding what new tools mean - particularly AI, data analysis tools, simulation tools, creativity tools, etc. There are amazing tools out there, and since everyone is staring at their personal computers, they can download and play with these tools together! That's been a revelation. 

Then we need assignments to get the students to reflect on their experiences, and what they think these tools might mean for the future - particularly in a  post-COVID world (a number of them are studying tourism, or international trade, or other subjects which are vulnerable to severe disruption) 

Teams handles assignments by distributing documents, but tracking the workflow. Basically, it sees an assignment as a transaction which can bounce between a teacher and a learner. Assignments can be set up so that a learner is sent a document containing instructions on what they are to do (this can be a multimedia document of course), and the learner can either edit this document with their response, or attach other documents when they submit their assignment. 

So basically, I divided 200 students into 11 teams, with a teacher overseeing 17-22 students, being able to track the transactions of the assignments between the student and the teachers. 

Into these assignments, students can write, but they can also capture video from their small-group discussions and paste the video into their submissions. They can also download and edit these videos and include other things from the course (for example, AI-generated music or art). 

Face-to-face, the need for small-group activity meant that we needed to divide the students into small classes, each coordinated by a teacher. Online this has proven to be less necessary - we still divide the students for their activities into smaller teams (we have set up 1 main team and 11 small teams), but it is possible to get 200 students actively involved in using tools and experimenting all in one go online. I've made extensive use of Microsoft Forms to break-up delivery, and this is an exercise we did today in using Google's Deep Dream generator... For the first day, we asked the students to bring something "to make a noise", and got them to make a John-Cage like musical happening as a warm-up!

It's running until the end of next week, and we have a special "experts day" to come, alongside sessions on Data processing (I'm doing something with Kaggle), simulation (NetLogo), and knots. But so far so good - particularly for the technology.

What is fascinating me is that the technology presents a different set of constraints around teaching and learning, and with those, new ways of coordinating conversations becomes possible. Of course, I don't want to be tied to Microsoft, but frankly, this is almost a peer-to-peer delivery system which could have a variety of different back-ends as an alternative to Microsoft's - blockchain/IPFS anyone??

Friday 9 October 2020

Mutual Information, Mutual Redundancy and the Cell

Shannon's measurements of Mutual Information and Mutual Redundancy have the same kind of organic feel to them that was originally displayed in Ashby's homeostat, and many other cybernetic devices. This organic correlation may have application in the design of new kinds of communication networks which operate on a cellular and ecological basis rather than through a "node-arc" model.

Mutual information is clearly defined as the overlap between the entropies of 2 phenomena - the extent to which one entropy can be coordinated with the entropy of the other. Thus it is a measure of the similarities in degrees of disorder between two systems. It turns out that this "similarity in degree of disorder" is particularly useful in calculating the extent that an information source has been transferred to a receiver, which may develop, in time, the capacity to predict the information produced by the source. Thus mutual information can also be considered as a measure of the "transfer" of information.

It's calculation can be simplified to the entropy-of-A +  entropy-of-B - entropy of A and B together.

Most of the time, mutual information in 2 dimensions like this produces a positive result. Indeed, it has been shown that mutual information cannot be negative. Yet, under certain circumstances, using Shannon's equations, it is, and negative values of mutual information have prompted much speculation as to what this means.  

In 3 dimensions, mutual information is more likely to be negative.  

These information-theoretical measurements can be related to three fundamental features of cellular organisation. Mutual information can be considered to represent the degree of self-organisation within a cell. Mutual redundancy concerns the overlap in the pattern of constraint between a cell and its environment. A cell also requires energy from its environment and this can be represented by the extent to its range of possible actions can be expanded through interacting with its environment (it's maximum entropy). 

In information theoretical analysis of economic activity, the three measures of mutual information, mutual redundancy and maximum entropy can be used to measure the level of innovation in an economy. However, this high-level calculation depends on lower-level processes involving groups of individuals within institutions. If the high-level organisation of the economy can be seen as an "organism", then might the low-level communications of individuals within the economy been seen as constituent "cells"?

Examining this from the perspective of education is interesting. Educational "cells" are not individuals. They are conversations involving a number of people (just as cells contain many interacting components)- and conversations display exactly the same features of mutual information, mutual redundancy and maximum entropy. Importantly too, however, is the fact that conversations have a history. The way a conversation develops depends not just on its history, but on the history of its components. The personal biographies of a cell's components will play an important role in the development of a conversation.

When academics talk about this "cell-like" communication structure, it is sometimes related to the structure of terrorist groups like the IRA, or the mafia, or the French Resistance. It is a principal characteristic of a Clandestine Cellular Network (see . Thinking about terrorist groups highlights the importance of a recursive structure in cells: the personal biographies of terrorists and freedom fighters is often tied to emotional trauma in individual histories. The trauma is instrumental in the larger communication cell growing. 

But going deeper still, the "cells" of conversations depend on biology - real cells. These too interact on the same principles - mutual information in their self-organisation; mutual redundancy in their engagement with their environment; maximum entropy in their gaining of energy and information from the environment. These cells too have a history which will determine the direction of their own development: cells have "hysteresis", bearing the marks of previous stages of evolution. 

Information theory is important to this because it provides a way whereby we can ask "are the patterns of organisation - between mutual information, mutual redundancy and maximum entropy - related?" Are the patterns of a cell related to the patterns of a conversation? Are the patterns of a conversation related to the patterns of an economy? 

A mathematical-empirical foundation for asking these questions is important: it allows us to take measurements and make predictions. It allows us to do simulations. It feels like a different kind of science, that takes organisation, history and communication together at multiple levels, and across phenomena. My interest in this is to explore new ways in which these equations can lead to a re-formation of educational structures using technology.

Sunday 4 October 2020

A Dialogical Cell Machine

I want to develop the ideas from yesterday's post about cells and networks with a closer look at cells and what a different kind of communication technology might look like that privileged cellular dynamics over individual ego. The question I left with yesterday is "What does the cell do?". I think John Torday's evolutionary biology and his First Principles of Physiology gives us a clear answer to this:

  1. A cell creates order within itself: it works against entropy, in the way Schrodinger describes
  2. A cell maintains stability with an ambiguous environment: it maintains homeostasis
  3. A cell gains energy from its environment: biologically, it gains energy through chemiosmosis, although multi-cellular organisms gain energy through digestion, photosynthesis, etc...
These principles apply at all levels of biological organisation - from cells to institutions.

Thinking about a "dialogical cell" - that is a conversation comprising a group of people, or a community, negentropy represents the ways in which people in the group organise themselves. Businesses, for example, organise themselves in functionally-differentiated units such as "accounts", "production", "marketing", etc. Academic societies organise themselves around topics and functions. This order arises through selection of particular communications - the "mutual information" of an organisation. Cognate terms serve as ways of indicating how things are organised. 

The maintenance of stability with an ambiguous environment requires that whatever happens inside a cell must represent itself to the outside environment in such a way that the cell can find a niche to survive in. Academic societies, for example, are related to one another in the topics they discuss. Each produce publications and public pronouncements of what they are doing. In so doing, they attract attention from other cells, and gain in sources of energy and support. They also contribute to the environmental conditions for their own survival - creating public communications which in time serve as an invitation to others to contribute to their survival. Such communications are rather like the "receptors" on the cell surface. 

I'm inclined to think of these external engagements as being the equivalent of an epigenetic mechanism. While the DNA of a cell might be represented by its internal organisational machinery - and a process of mutual information - the external engagement amounts to the production of epigenetic marks and the mutual redundancy between these marks and the environment producing an autocatalytic environment for the growth of the cell and the organism.  

It's a bit like a spider spinning a web - which is also a good example of redundancy. This external behaviour creates a niche for the spider, as well as transforming the environment for other organisms. That's what publications and other external communications do for dialogic cells.

In terms of energy, dialogic cells are populated by people who gain energy in other ways. However, the really important source of energy for any dialogue is new information - differences that make a difference, as Bateson would put it. Diversity in the environment of a cell is essential to the cell's survival. This is probably the biggest failing in current social networks - differences are attenuated. If there is no energy through difference, then cells are likely to eat themselves or each other. Which is pretty much what we see online. 

That's quite abstract. What about practical techy stuff? What's the functional spec for a dialogical cell machine?

What we need are:
  1. A mechanism for identifying mutual information as an organisation tool within a cell
  2. A mechanism for assisting the production of redundancy by the cell to its environment
  3. A mechanism for organising a dialogical cell such that it maximises the difference of its environment from which it can gain energy to grow
Obviously dialogue itself can identify mutual information. I saw this in the dialogues that occurred throughout the recent ANPA conference ( For example, Doug Matzke had produced a fascinating python program for doing geometric algebra, and Lou Kauffman noted the similarity between Matzke's approach and Peter Rowland's physics - "Maybe we should can put this together..." That's fine, but perhaps we can do more. In most videoed conversations now, we can produce transcripts very easily, and those transcripts can be analysed for mutual information, and references followed-up automatically, producing further mutual information. We should try this. Such analysis can be a catalyst to new forms of internal organisation in a dialogue, and it can also provide ways of managing large cells such that they might decide to split off and explore specific areas (mitosis/meiosis).

The epigenetic mechanism is more interesting because it requires some kind of system for processing and producing redundancies which might relate to external communications. What tools do we have for processing redundancy? That is precisely what machine learning does! Fed with information about internal dialogue and external dialogue, machine learning can identify external signals and generate new signals based on what is happening within the internal dialogue cell. The epigenetic mechanism is an anticipatory system. 

Left to its own devices, such a machine-learning driven mechanism will lead to confirmation bias. So a balance must be struck between the internal organisational processes and the external processes. Sometimes the epigenetic processes must generate unusual information as a way of attracting new kinds of cells from the environment. This can only happen by considering what the internal processes are doing and whether the homeostasis is "too stable". There must be a higher-level steering mechanism balancing mutual information with mutual redundancy, self-organisation and autocatalysis. 

What does all this feel like?

We start a discussion on Zoom (say). It's transcribed an analysed. New references are discovered, invitations sent out (the beginnings of epigenesis) and the discussion expands. Over time, each discussion is analysed and the result made available to its members. As internal organisational choices are made, so the analysis also identifies (through machine learning) the underlying patterns of the discussion, uses this to analyse the communications environment, and starts to support the generation of related documents (blog posts, etc), videos, etc, which are published to the outside world. Some of these attract new members... as the discussion develops, internally, the cell divides into related but separate discussions. 

I don't think this is Facebook - although there's plenty I haven't thought about yet.

Saturday 3 October 2020

Escaping the Ego Machine: Rethinking Systems Architecture for Educational Technology

I had an interesting discussion with a friend earlier this week about creating an online space for dialogue about education. The default technical solutions to this all look the same - they are all content management systems in various forms, where "personalisation" is provided in the form of tailoring the presented content to individuals based on their activities. 

Educational platforms like VLEs do not have the sophistication of Facebook's personalisation algorithms, although of course there is a lot of effort going in to trying to make this work. They are cruder CMS systems, displaying content according to particular organisational groups - e.g. modules, classes, programmes, etc. 

But saying all these systems are the same is to say that their basic architecture is the same: there is a server which acts as a repository of stuff contributed by teachers and (sometimes) students. Access to the system is controlled by an individual's account - their username and password. Activities too are tied to the individual. Although some systems allow for group activities in various ways, such group activity is really a different coordination of individual people, and a different presentation of content. 

But what is happening here? When we talk about "content" we are basically talking about "documents". A web-page is a document, a personalised feed in Facebook is a document, an assignment is a document... Who controls the documents when they're on the platform? 

This blog post is a document which I am writing and clearly I control what it says. Most blog posts are not collaborative efforts, they are individual and personal. When individuals publish things, they are mined for whatever information Google might find useful to sell stuff to other individuals. Obviously I have no control over this.

A lot of social media feels like an "Ego machine" - my thoughts, my documents, my desires feed a market of other individuals' thoughts, documents, desires. But to what extent is it an ego machine because of the systems architecture upon which it sits? If we didn't have servers and personal accounts, could it be different?

The question can be represented visually. The "ego machine" model can be represented as a set of interconnected nodes - individuals - with lines representing communicative acts of some sort. This is a "network model" shown below on the left. But social relationships in real life feel more like a cellular model, shown on the right. Cells are not individuals, they are "dialogues" or "codes of communication" - they might even be "communities of practice" - although I would want to dig into that loaded term...

What social media platforms have done is to overlay a "network model" of communication - which, after all was the simplest architecture for computers - onto a cellular model. The problem is that this excludes the detail of what happens in individual cells. 

Cells are not "nodes". They are active processes with a boundary that separates an "environment" which is negotiated and separated from a set of "internal operations". The collective action of the processes engaging in the environment and the processes maintaining internal states is to maintain the boundary - i.e. to maintain homeostasis with the environment. 

Seeing cells as processes with an inside, an outside, and a boundary presents a set of powerful questions which must be addressed. What are the internal processes doing? What are the external processes (those which engage the environment) doing? What happens at the boundary? More powerfully, these questions can be asked of all cells - including those that constitute the natural world. In the light of this, the network diagrams of social media look very one-dimensional - and I think this is reflected in our experience of the technology. 

Once we start asking questions about cells - whether its questions about cells of communication, or cells in our bodies, questions about "ego" take a back seat. We don't know the locus of consciousness and self - but we do know that it sits on a biological substrate, and that this biological substrate is cellular. We can also point to homologies in cellular processes at different levels of organisation. So the homology between cancer and the pathologies of confirmation bias and the corruption of a political system are telling, or the homology between epigenetic mechanisms at a cellular level, and our communicative practice online are also very powerful.

Moreover, once ego takes a back seat, focus falls not on the viability of individual cells, but on the coherence of the whole. 

That is where our technology needs to take us. I don't think a centralised server-based architecture can deliver this. We need something else. Documents can now be created collaboratively and used as vehicles for dialogue. This is opening the way for individuals to become "inter-mediaries" in document production, rather than authors. Distributing documents for diverse collaborative production is something that Microsoft Teams does very well - which is interesting - but then this technology works on a different technical principle to the  CMS. Can a coordination between different groups producing different documents be created so that some groups can naturally split (mitosis/meiosis) or die (apoptosis), all the time maintaining the coherence of the whole? These are the questions we really need to think about if we are to set ourselves straight for the future.