Saturday, 30 July 2022

Scientific Economy and Artistic Technique

I wrote (10 years ago!) about my struggle to compose: What's changed in me since?

Now I would say the key word is at point 5:  "If I have enough energy, I will battle on to try and get something down in these gaps, although at some point I get tired and give up" It's that reference to "energy" which has changed for me. What is that? This has become of great interest to me (see this more recent post: How do artists maintain the energy to continue?

This has always been a mystery to me - but it is the essence of what compositional technique is meant to do. Most composers work from a germinal idea which generates possibilities. These germinal ideas are highly economical and concentrated forms of energy. Most commonly, in universities and music colleges, students are told that such germinal ideas relate to patterns of pitches. I have to say I always struggled to relate to this. Pitches seem so abstract as entities - they are just frequencies after all. Music isn't made of pitches, it is made of feelings and energy, and the connection between the abstract patterns of pitches and the feelings always seemed too remote for me. 

In science, a germinal idea which is generative of possibilities is called a theory. Theories are used as a guide in the manipulation of nature and the prediction of events. In an important way, this is also a process of concentrating energy flows. Scientific curiosity depends on energy, and theories concentrate and focus the labour of scientific inquiry to produce new knowledge. There is almost certainly a physiological driver for theory production in science.  

Many successful modern composers do not have the hang-ups I experience about the abstractions of notes. Rather like mathematicians, they seem to delight in the manipulation of abstractions as a source of their composing work. What I believe they possess when they do this is a highly compressed representation of the energy of the work which is comparable to the scientist's theory. They use the abstractions to unfold the energy over the long period of time that it takes to get the actual notes down on paper. That is how they are able to get the whole thing done.

Having said this, there is a problem in becoming too fascinated by the mathematical manipulation of pattern to produce sound. It is like a scientist becoming too fascinated by their concepts. While such procedures can unfold music of energy and beauty, sometimes (perhaps quite often) it sounds abstract and remote. Techniques like serialism were developed to free the conscious mind of cliché so as to facilitate the authentic connection between the subconscious creative mind and its conscious expression. It was intended as an "unlocking" procedure. But an obsession with mathematical procedure and pattern carries its own clichés. Brilliance in science also effects a kind of psychodynamic unlocking. 

Over the last couple of years, I've become interested not in notes but in physiology. When I improvise I find that the concentrated and economical forms of energy are not in any pattern of notes, but in the pattern of my fingers. So often my improvisation exploits the economy of my usage of my hands. I've recently started to notate this physiological concentration. The advantage this has is that unlike abstract patterns of notes, the concentrated pattern of physiology does contain feeling and energy. While I can notate the physiology, I can also feel it physically, and in feeling it physically, the energy of its unfolding (so I can get notes down over time) can also be controlled. 

I wonder whether the way artists manage the energy of creation is a determiner of artistic style. Every period in history brings environmental stresses which impinge on the ability to manage the flow of energy in artistic expression. Ours is a time of "entropy pumps" - we live in an age of constant distraction. That may mean that our management of creative energy may have to be situated more closely to our bodies. Overly cerebral approaches may lead to a disconnect between what is said and what needs to be said (although maybe I'm being too cerebral!). It may be ok for writing blogs and academic papers - but really, that is a waste of time and energy. 

The ability to concentrate energy in a germinal form - which may be common to both art and science - is really the ability to facilitate the steering of the creative (or empirical) process. Something that facilitates steering in systems terms is a trim-tab. The creative process - and certainly the process of improvising - is rather like a bird in flight. The very best scientific work also has this quality of free thought. Technique is not there to direct the course of creativity. It is there to loosen the constraints which would otherwise prevent the freedom of movement of creative processes in turbulent times. 

Tuesday, 26 July 2022

Prufrock's Soul

A university friend said to me the other day that she felt writing academic papers was not nourishing in the same way as more artistic things that she did (but did less since she spent more time writing papers). I agree, and this makes me want to know more about differences between the qualia of different creative activities. What is nourished when the soul is nourished? What might be the mechanism?

Spiritual nourishment is visceral. There is a sensation, perhaps somewhere near the solar plexus, which is activated with certain activities which might be considered to be nourishing. Personally, my solar plexus rarely responds when I am writing. I know this because as I write this, I cannot feel it: the activity is in my head, not my belly. When I think more about the specific feeling of "soul nourishment" then I will rehearse those things which produce it - gazing at a beautiful sunset, beautiful moments in music, water - both still and a flowing stream, a cathedral or grand library.

There is something primeval about these experiences: something timeless. In the evolutionary theory of John Torday, as biological entities, we are phenotypes seeking information to return us to an original evolutionary state. Sometimes the seeking can go wrong and we simply end up lost. When T.S. Eliot writes in the "Love Song of J. Alfred Prufrock": 

"I should have been a pair of ragged claws

Scuttling across the floors of silent seas."

The ragged claws are the primal evolutionary state; Prufrock's weary, regretful, sexually repressed, empty-souled persona is the result of evolutionary accretions in search of a return to the simplicity of evolutionary origins which have only further obscured any deeper satisfaction. And Prufrock is lost. But the poem points to a kind of vector that connects primal origins to an empty life in search of meaning.

The point about this is that Eliot's soul was nourished in writing about a lost soul. The similarity to Dante is obvious. But what is it about Eliot's art which enables him to articulate this connection? 

Great poets, artists and composers harness energy. John Galsworthy commented about art and energy that: 

Art is that imaginative expression of human energy, which, through technical concretion of feeling and perception, tends to reconcile the individual with the universal, by exciting in him impersonal emotion. And the greatest Art is that which excites the greatest impersonal emotion in an hypothecated perfect human being.

(I'm grateful to Marie Ryberg for drawing my attention to Dewey's "Art as Experience" where he quotes this Galsworthy passage.) 

Eliot's poem does this. And the writing of academic papers does not have this effect. The question, it seems, is about energy. He understood the energy vector that connects his art and technique to a deeper truth about the universe, and the plight of J. Alfred Prufrock. 

Academic writing is rather deathly by comparison. The desire to explain away things which can't be explained, and conform to expectations of "proper referencing", "cogent arguments", "rigorous methods", etc, kills the soul. It might reward academics with promotion within an insane (and increasingly broken) system, but unless the work is truly ground-breaking, it amounts to little more than paraphrases of what has gone before. This is particularly true of education research.

When we do more deeply creative things, however, we engage with the energy that connects the scuttling claws with our present state. The regression connects us to where we come from, and where we are going. The are a number of hormonal and epigenetic factors which kick-in in the process. Moreover, the technique of creative work is very similar to what Galsworthy describes: a technical concretion of feeling and perception. The artist's challenge is to develop a technique whereby this can be managed. 

The deep challenge with this is that, of course, education does not see itself in relation to primal origins and energy vectors! It sees itself in relation to the development of independent "selves" as economic units in the making. But primal origins are what connect us to each other. What we imagine as our independent "self" is merely an apparatus for collecting epigenetic information and eventually transferring it to a new zygote, which will grow to some new apparatus for collecting information. 

Darwinian natural selection privileges the organism surviving in its environment, whereas the organism may merely be a vehicle for passing epigenetic information back to a zygote. It's ironic that Darwin's model probably had its origins in Darwin's schooling, while the establishment of the evolutionary model has reinforced an attitude to educational growth and development which has pushed creativity out in favour of STEM-related nonsense. 

Saturday, 16 July 2022

Disentangling Entanglement in the Social Sciences

One of the most unfortunate aspects of increasing interest in topics like complexity and systems is the appropriation of scientific terminology to obfuscate the kinds of problems which the systems sciences were developed to enlighten. It's not exactly the same problem as Sokal (Fashionable Nonsense - Wikipedia) identified 20 years ago as a kind of intellectual scientific posturing - that, he argued, was at worst a kind of fraud, and at best, intellectual laziness. What we see now is more of the latter, but it exists in a dominant normativity where it's almost impossible to suggest that simply saying stuff is "complex" is to do no more than posit a blanket "explanatory principle" which explains away intellectual difficulties, rather than invites the question "how? so then what?".  

Entanglement - as it has been used by Latour and others - is a case in point. Latour has positioned himself carefully here (see Bruno Latour, the Post-Truth Philosopher, Mounts a Defense of Science - The New York Times ( because he is aware of the problem (and as someone who began their career doing information theoretical analyses, he should know), but that hasn't stopped a sociomaterial industry (particularly in management science and education) growing up with long words and nothing much to say. Like all industries, it seeks to defend its position, which makes challenging it very difficult, and any practical educational progress even less likely. 

In physics, entanglement refers to the specific state of affairs in quantum mechanics where non-local phenomena are causally connected in ways which cannot be explained by conventional (Newtonian, locality-based) physics. If there is a fundamental underpinning idea here, it is not so much the weird interconnections between what might be seen to be "separate" variables, but rather the distinction between local and non-local phenomena, and the ways in which the totality of the universe is conceived in relation to specific locally observable events. Talking about entanglement without at least considering it in the light of totality and non-locality is like talking about the reality of ghosts on a fairground ghost train. 

Part of the problem is that we have no educational cosmology - no understanding of totality, or rather how education fits in a totality of the universe. This seems a grand and ambitious task - but if we deny that such a thing is possible, we then cannot defend allusions to science to help us address educational problems. This is why better educational thinkers are thinking about physics, education, technology and society together (this is good: Against democracy:  for dialogue - Rupert Wegerif). James Bridle's new book "Ways of Being" is also better - containing a lot of good stuff about biology and cybernetics -  although again, it's hard to see a coherent cosmology... (very interesting interview between him and Brian Eno here: Brian Eno and James Bridle on Ways of Being | 5x15 - YouTube)... so there's lots to do. 

We need not only to ask ourselves better questions, but think of better methods for addressing those questions. Some things don't need to be that complicated, and the seeds for new thinking are often in the past. Warren McCulloch's early work on neural networks (A heterarchy of values determined by the topology of nervous nets | SpringerLink), for example, contains these fascinating diagrams:

The above diagram explains McCulloch's notation: the continuous lines at the top are the nervous system, while the broken lines at the bottom are the environmental system. Receptors receive (transduce) signals from the environment, and effectors cause changes to the environment through behaviour of the organism (that's transduction too). There are two lines above representing (for example) two variables or categories of perception (perhaps "black" and "white"). But this diagram above does nothing: what goes in comes out.

The diagram below is much more interesting. The feedback of each category is wired into every other category (rather like the Ashby homeostat), and this keeps the thing in flux. What does that mean for our values? Perhaps left to our own devices we would forever be shifting from one category to another. But in communication with other such systems, stabilities in the perceptual apparatus of many people will result in values which can be codified and assumed to be "fixed" (although what appears static is an epiphenomenon of a continuous process):

Are such values and perceptions "entangled"? In the sense that Latour and Orlikowsi discuss it, yes. And indeed, the sociomaterial dogma becomes much clearer as a cybernetic mechanism conceived 80 years ago. It simply requires rediscovering how perception was thought about at the beginning of cybernetics. Intellectual amnesia is the root of our current problems with complexity.

Having said this, McCulloch didn't address totality in a satisfactory way. He knew the challenge. In his paper on "What is a number" (see Warren S. McCulloch: What Is a Number, that a Man May Know It, and a Man, that He May Know a Number? ( he says:
"The inquiry into the physiological substrate of knowledge is here until it is solved thoroughly, that is, until we have a satisfactory explanation of how we know what we know, stated in terms of the physics and chemistry, the anatomy and physiology, of the biological system"
That is an appeal to grappling with the science of totality. We are going to need to take educational research a lot more seriously, and have a very different kind of research effort, if we are going to get close to this. Its importance, however, is urgent. The study of education is not a study of a particular kind of social practice. It is the study of how organisms which live for a short period of time, organise themselves to ensure that future generations can survive. 

Tuesday, 5 July 2022

Cells and Sociomateriality

The sociomaterial gaze looks upon the world as a set of interconnections. Running through the "wires" of this web is the agency of individual entities - humans (obviously) and (more controversially) objects and technologies constituting organisational structures, power relations, roles, etc. To deal with the complexity of this presentation of the world, sociomaterialists evoke ideas from quantum mechanics like "entanglement" and (occasionally) "superposition" to explain the complex interactions between the components, looking to science (as represented, for example, by the interpretation of Bohr by Karen Barad) to supply sufficient doubt over the ability to be more precise about what is actually going on. If I was being unkind, I would say the end result has been a lot of academic papers with long words which mystify more than they enlighten. Even critiquing it seems to invoke complex vocabulary: "heterogeneous dimensions are homogenized in a pan-semiosis" (Hagendijk, 1996 - see - well, yes. 

Gazing at the world's complexity and trying to explain it by purely focusing of manifest phenomena is like trying to explain the universe but ignoring its expansion. The synchronic (structural) dimension alone will not suffice. History - the diachronic dimension - is critical to get a perspective which is more scientifically defensible. It is a profound change in perspective: the diachronic dimension enables us to see the world in 3D. This means that we have to draw away from looking at the relation between objects/technologies and people (for example), and instead focus on life itself  - to understand not only life's characteristics, but the mechanisms behind its creation of the material environment with which sociomateriality is so fascinated. This is a project connecting Lamarck, Bateson, Schrodinger and Bohm with recent work ranging from astrobiology, cellular evolution and epigenetics. 

I want to explain why this diachronic perspective is a much more powerful way of looking at education, technology and human life.   

Every one of my cells has a history. Not just the history of where it began in me - which was in one of the three "germ layers" of the zygote that eventually grew into baby me - but a deeper history of how each of the (roughly) 200 different cells types emerging from the zygote acquired their individual structures and properties. Each of them has a history much older than me. Each of them acquired different components (organelles) which we now see as a process of absorption of externally existing components in the environment: endosymbiosis. Cellular endosymbiosis occurred in response to environmental stress. Early cells had to reorganise their structures and functions in order to maintain: 

  • homeostasis within the cell boundary
  • balance with the external environment
  • energy acquisition from the environment 
Through endosymbiosis, each of my cells carries a historical record of its own evolution. For example, the movement of animals from water to land is carried in the development of lung cells, which evolved from the cells of the swim bladders of fish. Since we are all made of the same cells, this historical record within our constitution unites not only common members of a species (all of us), but all cellular life.

To what extent might we "know" this? To what extent does our physiological knowledge play out when we sit at our computers or stare at our phones? Moreover, if we do intuitively sense our deep interconnections with nature, by what mechanism of nature do we behave as if we deny this completely?

This is to turn the fundamental questions of ecology (and particularly, cybernetic ecology - Bateson, etc) upside down. It is not to ask how we are connected, but how human relations have evolved to be disconnected. Is there a logic here? Our scientific problem is that if we look for the logic of human behaviour taking the unit of analysis as human relations (or worse, the individual), we will come to the conclusion that only specific kinds of relation "go wrong". Some relations may appear to "go wrong" more than others, but in a deep sense, we all suffer from bad relations. 

This question of the "evolution of disconnection" cannot be addressed unless we consider the cellular origins of life which connect us all, together with the ways in which the evolutionary history of cells is programmed into us. Human disconnection may be the activation of older mechanisms in cellular development which, at the scale of cells or small organisms, may not have been as devastating as we now make them. 

Our social engagement in the context of a technological environment is not "entangled" (whatever that means), it is an "evolved disconnection" from nature. We communicate - make common - our sense of being human - of having this collection of cells, which we understand to be common. That is how the empathy, love, and the expression of doubt work. In the context of that communication, we also communicate our physiological reaction to the material artefacts around us, which are in turn the results of historical communications. In that historical communication, there are the seeds of our current evolved disconnection which may be sometimes be felt as alienation or frustration, and (sometimes) as energy, excitement and flow. At the root of that evolved disconnection are deeper natural processes of cellular evolution. The better we can understand those, the better equipped we will be to steer our way through our current (and dangerous) state of evolved disconnection. 

This is not to invite further metaphysical speculations. It is to invite something more practical. Our disconnection from nature is now throwing up tremendous turbulence in our existence. Like a plane flying through turbulence, the challenge is steering, and the tapping in to the deep knowledge to do that steering well. I have been wondering recently if cellular evolutionary history is the hidden mechanism of biological steering - a kind of "trimtab" as Buckminster Fuller described. If that is the case, if we can grasp it, we can reconnect our steering with the natural world. Might we have technologies to help us?

Sunday, 26 June 2022

Learning, Dialogue and AI: Offline initiatives and Political Freedom

I'm running a small EU project in July called C-Camp. The idea is to instil and explore computational practices among students from 4 European Universities (Prague, Copenhagen, Milan and Heidelberg). I wanted to create something for it which built on my experiences in Russia with the Global Scientific Dialogue course (Improvisation Blog: Transforming Education with Science and Creativity ( - about which a paper is shortly to appear in Postdigital Science and Education). 

In Russia, the vision was to present students with a technological "cabinet of curiosities" - a way of engaging them in asking "this is interesting - what do you make of it?". It was the uncertainty of encounter with technological things which was important - that was the driver for dialogue, which dominated the course. C-Camp is very much in the same spirit. 

This time, I have been a bit more ambitious in making my cabinet of curiosities. I've made a cross-platform desktop app using ElectronJS which incorporates a tabbed web-browser, alongside self-contained tools which make available learner's data to the learners (and only to the learners). The advantage of a desktop tool is that, apart from the learners being able to change it (my programming and design is merely functional!), nothing personal goes online, apart from the traffic in each website.  The data of engagement with the tools - which is something that is usually hidden from learners - then becomes inspectable by them. There  are lots of "cool tools" that we suggest exploring (like the amazing EbSynth below)

The pedagogy of the course will then be to explore the data that learners themselves create as they process their own uncertainty. It's messy data - which can be an advantage educationally - but it illustrates a number of important principles about what is going on online, and what data big tech companies are harvesting, and how they are doing it. 

More to the point, by having a desktop tool, there is an important thing to say that "edTech doesn't have to be like the LMS!". Not everything needs to be online. Not everything needs to be harvested by corporations. And more to the point, if individuals were more in contact with their own data - particularly their own learning data - there are opportunities for deepening both our learning and our engagement with technology. So supporting students in downloading and analysing their own Facebook data can be part of a journey into demystifying technology and inspiring the imagination to look "beyond the screen"


One of the things I've done is to integrate 2 AI services. One of them uses the OpenAI service, which is online. The code for doing this is quite simple, but the important thing is that the processing happens remotely on OpenAI's servers. 

However, the other AI service is local. I've integrated the VGG16 model with Imagenet data so that students can upload and explore image recognition. The model and the code are all on the local machine. The point to make is that there is no reason why OpenAI shouldn't work like this too - other than commercial reasons.

What fascinates me about this is that for all the anxious talk about AI and its supposed "sentience", nobody talks about the technical architecture which basically up-ends the idea that everything has to be online. Large-scale language models are basically self-contained anticipatory dialogical engines which could function in isolated circumstances.

Think about this: imagine in a non-free country like Russia or China, where the authorities seek to monitor and control the conversations that individuals have, suddenly individuals can have conversations which are not monitored - simply by being in possession of a particular AI file. 

I'm doing a demo of OpenAI tomorrow in China. The last time I did it there, it worked. I doubt it will work for much longer. But it's easy to envisage a future where a market for specialised language model AIs start to infiltrate the underworld allowing people to have "prohibited conversations". That could mean both very good things for social organisation and freedom from oppression, and bad things in terms in terms of crime. 

That is one of the more fascinating things to discuss in C-Camp. I think I might be more careful with my Chinese audience!

Saturday, 25 June 2022

How Learning Feels

When learning works, it feels like a burst of energy. It is the energy of an explosion of new possibilities brought about through some revelation. It is a spiritual moment (something we hardly ever acknowledge) - even when it is learning about unspiritual things. Like the discovery of a new physical energy source, we can live off the energy of new learning for some time. 

Striving for this moment is not easy. Yet we are driven towards it for reasons we do not understand. Teachers often assume that the motivation is produced by the mere operation of the education system. But the education system exists because curiosity and the motivation to learn exists. The system has no explanation for curiosity, and it struggles to conceive of ways of learning outside of itself.

New possibilities are possibilities for new social action. It is not just what some sociologists call "agency", but a transformed social configuration. A learnt skill is a transformation in social connections and conversations. It is new dialogical potential. And dialogical potential begets new possibilities for learning and energy distribution among others. To talk of the energy of learning, we should also talk of the energy of teaching. There is an energy flow in these dynamics.

In natural ecosystems like ponds and meadows, energy dynamics are very important. Ecosystems maintain themselves by keeping the energy flowing between co-evolved co-habiting system components. If the flow is stopped - by environmental damage, for example - the ecosystem dies. 

Education systems have become tragically good at preventing flows of energy. Instead of allowing energy to flow, education systems hoard it, exploit it, seek individual gain from it, use it to make money, and seek to make ourselves "powerful" as if we are independent from everyone else. 

We do this partly because we do not understand the dynamics of energy. If we did, we would take music much more seriously because it is one of the few human activities which exhibits energy flow in a pure form in a human system.

Intuitively, I think we know this. It is a symptom of the education system that it prevents us from "knowing" what we know deep down. Somehow we need the education system to adapt so that  it helps us to steer ourselves through what we know deep down. It needs to ease our steering - particularly in uncertain times. It is a transformation from hoarding knowledge to assisting steering. Then perhaps the steering of learning will feel more natural.

Wednesday, 8 June 2022

Trimtabs and Loosening Creativity

Creative processes are often difficult. It is hard to steer through distractions, uncertainty, self-doubt, dead-ends, etc. The steering becomes "heavy". So what's wrong with the mechanism, and what might be done to loosen things up to make the process more navigable?

The construction of niches for creative work is critical. It is the niche within which new things can grow. From a technical/theoretical perspective, niches are the result of redundancy. In his description of the Zone of Proximal development, Vygotsky said as much (without using the word "redundancy"), in highlighting the importance of imitation in what he called the "learning" process, and arguing that "development" lags behind "learning". In the same way, creation lags behind redundancy - it doesn't matter what kind of creation it is - it can be technical, artistic, organisational, theoretical or scientific. 

Margaret Boden talked once of the creative work of Spanish seamstresses making Flamenco dresses. She said "they do one layer, then another, then another, then another... what's going on there?" It's the same with things like mosaic, quilt-making or knitting. I didn't know enough about redundancy at the time to suggest it as an explanation, but I think she was already thinking this. This is niche construction. 

It is something we tend to ignore in education because we have become so obsessed with outcomes and products, seeing the processes which produce them as "problem solving". The word  "solving" is interesting because it really means "loosening" - solvere. That's not how people who talk about problem solving think about it. But if loosening really happens, then it makes the "steering" easier.  

Buckminster Fuller's idea of a trimtab is a loosening device. It literally loosens the steering, and it does it by creating a niche for steering - simply by  adjusting the pressure on a rudder or a wing. This tiny thing at the back-end of the navigation process is the thing that makes everything else work. Now perhaps its not stretching things too far to say that trimtabs create redundancy. Without them, there are a variety of different forces and pressures operating on the wing - so much variety that there is no single steering movement that can manage this variety. The trimtab reduces the variety by increasing the constraint. It's rather like a spider spinning a web. By creating a uniform area of lower pressure,  steering can be assisted. 

The trimtabs of our organisations lie in the redundancy of communication among their workers. Where there is high redundancy, we will also see what we might call "collegiality". Collegiality, team working, and a shared mission can all create the niche for organisational creativity. An absence of it will make creativity very difficult. 

Our organisations do not have operational trimtabs. The only lever they can pull is the departmental meeting - and this has become a ritual which often serves very little purpose. There is a deep need for exploring new mechanisms for institutional organisation. The answer to this lies in technology - but not the kind of surveillance technology which is often talked about (like "learning analytics"). Surveillance will not produce collegiality. Quite the opposite. 

We need to use technology to provoke dialogue among colleagues. It is through the dialogical engagement among colleagues that effective niches can be established. This is not to see technology as instrumental, but dialogical. AI may be our best opportunity to do something like this, and if there is one single challenge that faces us with that technology, it is that we misuse it to tighten, and not loosen, the steering.