Monday 10 April 2023

Quantum Ears

It seems obvious to say that music starts at time a and finishes at time b, and in between goes on a journey. But I'm beginning to hear it differently. I don't think there is a time a and a time b: they are constructed as part of our sense-making about what happens to us when we listen or play. Importantly, our sense-making must omit certain key aspects of making music. The principal dimension that I think is omitted is noise, or the energy that is continually shaking our senses and causing our physiology to find new ways of organising itself. 

If we consider what noise does, then the journey of music over what is perceived as time is entirely co-present at any "now". Music is a more like a space to explore than a path to follow. From the very moment that we both make and don't make a sound, the whole space is there, existing in the dynamic between physiology and the universe. 

Harrison Birtwistle seems to have heard music like this, and his thought has had a big influence on me. I was particularly struck by Birtwistle's appreciation of Paul Klee - particularly Klee's pedagogical sketchbooks. Birtwistle says:

Like Paul Klee, I'm taking a line for a walk. But the lines Klee draws are pure continuum, they look like a map of a walk or a journey. And this is how we usually think of journeys - fluid things which are uninterrupted. But when you're in the process of journeying, you perceive them differently. You don't look straight ahead, you look to the right and then to the left. And when you turn to the left you fail to take in the events on the right and vice-versa. In retrospect you think of the journey as being a logical progression from one thing to another, but in actual fact it consists of a series of unrelated things, which means that you're simply making choices all the time, choices about where to look. It's to do with discontinuity. You have a continuum, but you're cutting things out of it while you look the other way.

Music is discontinuous in essence. The "continuity" is something that perception imposes on us, making us ignorant of the dynamics that drive its discontinuities. Deep down, what we perceive in Mozart or Bach (and in Birtwistle) is coherence, which is not the same thing as continuity. 

Coherence does not need time as we understand it. It represents the deep symmetry of nature, in which what we call time is a parameter. In quantum mechanics, this deep symmetry is what balances out local (physically proximate) phenomena with non-local (physically distant) phenomena. For there to be "spooky action at a distance" (which there appears to be), then there must be some underlying balancing that goes on between what happens locally and something happening non-locally. All matter, including our physiology - and our ears - will partake in this universal symmetry.

Because of this complex symmetrical mechanism, the energy of the quantum world is always buzzing and interfering with our physiological substrates. To deal with this, all life needs to construct niches. The space of music is its niche. To be entranced by music is to be drawn into its niche, and then (in the case of Western classical music) to be convinced of music's "journeying". But the journey is an illusion. Music immediately presents a multiplicity of the same thing. Heterophony is the closest we get to this kind of thing. 

Taking time and continuity out of the music equation carries important lessons for other aspects of life. Learning, like music, is discontinuous, but learners and teachers are forced to deny this by the expedience of institutions who must regiment educational practice. Equally, the climate emergency is often portrayed as a "race against time" - but rather like the pathology of education, the more we impose a linear model on what is essentially a discontinuous system, we become (despite the good intentions of activists) more denatured, not less. The same is true in politics: our only understanding of a regulatory system is one which works in a linear continuous fashion, and which in operation creates more alienation.  

Thursday 6 April 2023

Universal Uncertainty

Measuring "speed" of change is tricky - speed is relational. There does however seem to be a lot more uncertainty around: anticipating the future means grappling with very high degrees of contingency. To say "things" change, what we mean by "things" is not so much "stuff happening in the world", but rather our relation to "stuff happening in the world". It's not the stuff which is uncertain. It is the relationship between our context and perception and "stuff" which is generating more contingency in our decision-making. 

Uncertainty means disorder in relations. We can measure "maximum disorder" of relations as the entropy of the stuff in the world (particularly when new technologies increase the number of options we have, or a new virus radically restricts our capacity to adapt to the world) in relation to the entropy of our capacity to deal with it. If the equations don't balance, then there will be uncertainty.  At some point in the future, these equations will balance out again - and on it goes. This appears to be an evolutionary principle. 

COVID was a good example of this explosive relative uncertainty. A disruption at a biological level of organisation impacted on the normal institutional mechanisms for dealing with uncertainty (see here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518093/). As a result, it became very difficult to coordinate expectations across society with normal regulatory mechanisms. This necessitated an authoritarian doctrine of "follow the science" backed-up with the threat of force, as a way of radically changing the way people lived. The irony about this was that science is the business of exploring uncertainty, while the COVID authoritarian science (rather like "school science") excluded uncertainty in its official pronouncements, to leave doubt and inquiry in the hands of conspiracy theorists. "Following the science" is not the same as "being scientific".
 
I've been thinking about this diagram, presented by Jerry Ravetz to explain Post-Normal Science. All science displays degrees of uncertainty. In a presentation I gave the other week, I contrasted images from the Hubble telescope and images from the James Webb telescope. I said that while the technology improves, and we get more information (in fact, the maximum entropy of information increases), there is still a relation between those things which we are certain about, and those things which we are not certain about. The relation between certainty about craters on the moon, and certainty about planets in other galaxies is constant. 


In the context of COVID, this is useful, because there were things which we knew were high risk for transmission, and other things about which there was much argument. With COVID, there were also high decision stakes alongside high scientific uncertainty. The difficulty was that government not only failed to convey the systems uncertainty, but in fact attenuated it.
 
This diagram is also interesting because it reveals that there is a a gradation of causal relationships in the "systems uncertainty" direction. Attributions of causation between factors become more contingent the further one goes from left to right. It is perhaps no surprise that contingency in decision also rises, and perhaps this is related to the "stakes" of those decisions.  How might we think about this gradation of causal relationships? 
 
These must be related to the communication dynamics that are established in the light of experience. Hume argued that causes were the outcome of communication dynamics between scientists in the light of their experiments. I think he was right (although lots of people don't),  Regularity of events was the key ingredient to produce scientific consensus. The problem is that with higher systems uncertainties, the likelihood of regularity in events become less. Systems become more complex, more contingent, mechanisms harder to agree on. This lack of social agreement can impact the decision-stakes: failure to agree scientifically can render political chaos and social disorder. 

With COVID, the fundamental disruptive mechanism was a bio-techno-social dynamic, where technology took the forms of apps, masks, vaccines, etc. It's actually very similar with AI at the moment. That is also a bio-techno-social disruption, where its not a disease that represents the "bio" bit, but our cognition and emotions. The challenge for institutions is to find a way of renormalising relations. That requires finding new perspectives from which to view the dynamics we are in. 

In some ways, COVID presented an easier challenge because it (sort of) went away, and life could get "back to normal". AI is much more serious because the institutional discourse relations cannot grasp what is happening in the bio-techno-social mechanism, and are constantly blind-sided by "the next cool thing". I wonder if these are the conditions within which Copernicus and Galileo paved the way to a social gestalt-switch which restabilised European institutions.

In order to get on top of what is happening to technology, we are going to need a similar gestalt-switch.