Wednesday, 14 October 2020

Microsoft Teams, Class Notebooks, 200 students and 11 teachers in Vladivostok

I'm currently delivering the 3rd year of the Global Scientific Dialogue course in Vladivostok with wonderful colleagues at the Far Eastern Federal University, led by Elena Suvorova.  We did it first face-to-face in 2018 (see https://dailyimprovisation.blogspot.com/2018/10/transforming-education-with-science-and.html). This time it's online and in Microsoft Teams. I have to say, Teams feels like a real advance in educational technology. Yes, it's Microsoft, with all its big corporate evilness. But.. this is a new way of doing teaching and learning, because it is a different kind of technical architecture.  Since my day-job has involved rolling-out Canvas, that might seem a surprising thing to say. Canvas has some strong points (its API!), but it remains a web-based, centralised Content Management System. Which is fine... but it constrains the educational practice around content delivery.

Teams can work a bit like Canvas - you can use its file storage mechanisms to deliver content. And if you try to do this, you would think Canvas is much better because it makes things look prettier. But you'd be missing the point.

The best bits in Teams are the ways that it distributes documents to students (or other team members). Each individual gets their own personal copy of a document, but if you are a teacher, the student's document is also viewable and editable by you as a teacher. This is new. In a content-management system, the system administrator, or the person who "owns" the course, owns the documents (with perhaps a few exceptions). In Teams, the users own their documents.

Perhaps there's not as much user-ownership as I would like, but it's a start. What can we do with this educationally?

Well, first it means that each user-owned document is a vehicle for personal conversation and dialogue with a teacher - or even other learners. In order to take advantage of that, we need a pedagogy which promotes personalised learning.

Global Scientific Dialogue always aimed at personalised learning - the idea was to take students through a set of "rooms" with different activities, tools and objects to get them to reflect on their own learning needs, career wishes, etc. Face-to-face there was lots of post-it notes and flip-chart paper... which was fine (good in fact). But online it's better.

Now the course is focused on "tools". The content of the course, as much as there is any, is themed around using tools and understanding what new tools mean - particularly AI, data analysis tools, simulation tools, creativity tools, etc. There are amazing tools out there, and since everyone is staring at their personal computers, they can download and play with these tools together! That's been a revelation. 

Then we need assignments to get the students to reflect on their experiences, and what they think these tools might mean for the future - particularly in a  post-COVID world (a number of them are studying tourism, or international trade, or other subjects which are vulnerable to severe disruption) 

Teams handles assignments by distributing documents, but tracking the workflow. Basically, it sees an assignment as a transaction which can bounce between a teacher and a learner. Assignments can be set up so that a learner is sent a document containing instructions on what they are to do (this can be a multimedia document of course), and the learner can either edit this document with their response, or attach other documents when they submit their assignment. 

So basically, I divided 200 students into 11 teams, with a teacher overseeing 17-22 students, being able to track the transactions of the assignments between the student and the teachers. 

Into these assignments, students can write, but they can also capture video from their small-group discussions and paste the video into their submissions. They can also download and edit these videos and include other things from the course (for example, AI-generated music or art). 

Face-to-face, the need for small-group activity meant that we needed to divide the students into small classes, each coordinated by a teacher. Online this has proven to be less necessary - we still divide the students for their activities into smaller teams (we have set up 1 main team and 11 small teams), but it is possible to get 200 students actively involved in using tools and experimenting all in one go online. I've made extensive use of Microsoft Forms to break-up delivery, and this is an exercise we did today in using Google's Deep Dream generator... For the first day, we asked the students to bring something "to make a noise", and got them to make a John-Cage like musical happening as a warm-up!

It's running until the end of next week, and we have a special "experts day" to come, alongside sessions on Data processing (I'm doing something with Kaggle), simulation (NetLogo), and knots. But so far so good - particularly for the technology.

What is fascinating me is that the technology presents a different set of constraints around teaching and learning, and with those, new ways of coordinating conversations becomes possible. Of course, I don't want to be tied to Microsoft, but frankly, this is almost a peer-to-peer delivery system which could have a variety of different back-ends as an alternative to Microsoft's - blockchain/IPFS anyone??


Friday, 9 October 2020

Mutual Information, Mutual Redundancy and the Cell

Shannon's measurements of Mutual Information and Mutual Redundancy have the same kind of organic feel to them that was originally displayed in Ashby's homeostat, and many other cybernetic devices. This organic correlation may have application in the design of new kinds of communication networks which operate on a cellular and ecological basis rather than through a "node-arc" model.

Mutual information is clearly defined as the overlap between the entropies of 2 phenomena - the extent to which one entropy can be coordinated with the entropy of the other. Thus it is a measure of the similarities in degrees of disorder between two systems. It turns out that this "similarity in degree of disorder" is particularly useful in calculating the extent that an information source has been transferred to a receiver, which may develop, in time, the capacity to predict the information produced by the source. Thus mutual information can also be considered as a measure of the "transfer" of information.

It's calculation can be simplified to the entropy-of-A +  entropy-of-B - entropy of A and B together.

Most of the time, mutual information in 2 dimensions like this produces a positive result. Indeed, it has been shown that mutual information cannot be negative. Yet, under certain circumstances, using Shannon's equations, it is, and negative values of mutual information have prompted much speculation as to what this means.  

In 3 dimensions, mutual information is more likely to be negative.  

These information-theoretical measurements can be related to three fundamental features of cellular organisation. Mutual information can be considered to represent the degree of self-organisation within a cell. Mutual redundancy concerns the overlap in the pattern of constraint between a cell and its environment. A cell also requires energy from its environment and this can be represented by the extent to its range of possible actions can be expanded through interacting with its environment (it's maximum entropy). 

In information theoretical analysis of economic activity, the three measures of mutual information, mutual redundancy and maximum entropy can be used to measure the level of innovation in an economy. However, this high-level calculation depends on lower-level processes involving groups of individuals within institutions. If the high-level organisation of the economy can be seen as an "organism", then might the low-level communications of individuals within the economy been seen as constituent "cells"?

Examining this from the perspective of education is interesting. Educational "cells" are not individuals. They are conversations involving a number of people (just as cells contain many interacting components)- and conversations display exactly the same features of mutual information, mutual redundancy and maximum entropy. Importantly too, however, is the fact that conversations have a history. The way a conversation develops depends not just on its history, but on the history of its components. The personal biographies of a cell's components will play an important role in the development of a conversation.

When academics talk about this "cell-like" communication structure, it is sometimes related to the structure of terrorist groups like the IRA, or the mafia, or the French Resistance. It is a principal characteristic of a Clandestine Cellular Network (see https://en.wikipedia.org/wiki/Clandestine_cell_system) . Thinking about terrorist groups highlights the importance of a recursive structure in cells: the personal biographies of terrorists and freedom fighters is often tied to emotional trauma in individual histories. The trauma is instrumental in the larger communication cell growing. 

But going deeper still, the "cells" of conversations depend on biology - real cells. These too interact on the same principles - mutual information in their self-organisation; mutual redundancy in their engagement with their environment; maximum entropy in their gaining of energy and information from the environment. These cells too have a history which will determine the direction of their own development: cells have "hysteresis", bearing the marks of previous stages of evolution. 

Information theory is important to this because it provides a way whereby we can ask "are the patterns of organisation - between mutual information, mutual redundancy and maximum entropy - related?" Are the patterns of a cell related to the patterns of a conversation? Are the patterns of a conversation related to the patterns of an economy? 

A mathematical-empirical foundation for asking these questions is important: it allows us to take measurements and make predictions. It allows us to do simulations. It feels like a different kind of science, that takes organisation, history and communication together at multiple levels, and across phenomena. My interest in this is to explore new ways in which these equations can lead to a re-formation of educational structures using technology.

Sunday, 4 October 2020

A Dialogical Cell Machine

I want to develop the ideas from yesterday's post about cells and networks with a closer look at cells and what a different kind of communication technology might look like that privileged cellular dynamics over individual ego. The question I left with yesterday is "What does the cell do?". I think John Torday's evolutionary biology and his First Principles of Physiology gives us a clear answer to this:

  1. A cell creates order within itself: it works against entropy, in the way Schrodinger describes
  2. A cell maintains stability with an ambiguous environment: it maintains homeostasis
  3. A cell gains energy from its environment: biologically, it gains energy through chemiosmosis, although multi-cellular organisms gain energy through digestion, photosynthesis, etc...
These principles apply at all levels of biological organisation - from cells to institutions.

Thinking about a "dialogical cell" - that is a conversation comprising a group of people, or a community, negentropy represents the ways in which people in the group organise themselves. Businesses, for example, organise themselves in functionally-differentiated units such as "accounts", "production", "marketing", etc. Academic societies organise themselves around topics and functions. This order arises through selection of particular communications - the "mutual information" of an organisation. Cognate terms serve as ways of indicating how things are organised. 

The maintenance of stability with an ambiguous environment requires that whatever happens inside a cell must represent itself to the outside environment in such a way that the cell can find a niche to survive in. Academic societies, for example, are related to one another in the topics they discuss. Each produce publications and public pronouncements of what they are doing. In so doing, they attract attention from other cells, and gain in sources of energy and support. They also contribute to the environmental conditions for their own survival - creating public communications which in time serve as an invitation to others to contribute to their survival. Such communications are rather like the "receptors" on the cell surface. 

I'm inclined to think of these external engagements as being the equivalent of an epigenetic mechanism. While the DNA of a cell might be represented by its internal organisational machinery - and a process of mutual information - the external engagement amounts to the production of epigenetic marks and the mutual redundancy between these marks and the environment producing an autocatalytic environment for the growth of the cell and the organism.  

It's a bit like a spider spinning a web - which is also a good example of redundancy. This external behaviour creates a niche for the spider, as well as transforming the environment for other organisms. That's what publications and other external communications do for dialogic cells.

In terms of energy, dialogic cells are populated by people who gain energy in other ways. However, the really important source of energy for any dialogue is new information - differences that make a difference, as Bateson would put it. Diversity in the environment of a cell is essential to the cell's survival. This is probably the biggest failing in current social networks - differences are attenuated. If there is no energy through difference, then cells are likely to eat themselves or each other. Which is pretty much what we see online. 

That's quite abstract. What about practical techy stuff? What's the functional spec for a dialogical cell machine?

What we need are:
  1. A mechanism for identifying mutual information as an organisation tool within a cell
  2. A mechanism for assisting the production of redundancy by the cell to its environment
  3. A mechanism for organising a dialogical cell such that it maximises the difference of its environment from which it can gain energy to grow
Obviously dialogue itself can identify mutual information. I saw this in the dialogues that occurred throughout the recent ANPA conference (http://anpa.onl/media/anpa-41-web-conference/). For example, Doug Matzke had produced a fascinating python program for doing geometric algebra, and Lou Kauffman noted the similarity between Matzke's approach and Peter Rowland's physics - "Maybe we should can put this together..." That's fine, but perhaps we can do more. In most videoed conversations now, we can produce transcripts very easily, and those transcripts can be analysed for mutual information, and references followed-up automatically, producing further mutual information. We should try this. Such analysis can be a catalyst to new forms of internal organisation in a dialogue, and it can also provide ways of managing large cells such that they might decide to split off and explore specific areas (mitosis/meiosis).

The epigenetic mechanism is more interesting because it requires some kind of system for processing and producing redundancies which might relate to external communications. What tools do we have for processing redundancy? That is precisely what machine learning does! Fed with information about internal dialogue and external dialogue, machine learning can identify external signals and generate new signals based on what is happening within the internal dialogue cell. The epigenetic mechanism is an anticipatory system. 

Left to its own devices, such a machine-learning driven mechanism will lead to confirmation bias. So a balance must be struck between the internal organisational processes and the external processes. Sometimes the epigenetic processes must generate unusual information as a way of attracting new kinds of cells from the environment. This can only happen by considering what the internal processes are doing and whether the homeostasis is "too stable". There must be a higher-level steering mechanism balancing mutual information with mutual redundancy, self-organisation and autocatalysis. 

What does all this feel like?

We start a discussion on Zoom (say). It's transcribed an analysed. New references are discovered, invitations sent out (the beginnings of epigenesis) and the discussion expands. Over time, each discussion is analysed and the result made available to its members. As internal organisational choices are made, so the analysis also identifies (through machine learning) the underlying patterns of the discussion, uses this to analyse the communications environment, and starts to support the generation of related documents (blog posts, etc), videos, etc, which are published to the outside world. Some of these attract new members... as the discussion develops, internally, the cell divides into related but separate discussions. 

I don't think this is Facebook - although there's plenty I haven't thought about yet.

Saturday, 3 October 2020

Escaping the Ego Machine: Rethinking Systems Architecture for Educational Technology

I had an interesting discussion with a friend earlier this week about creating an online space for dialogue about education. The default technical solutions to this all look the same - they are all content management systems in various forms, where "personalisation" is provided in the form of tailoring the presented content to individuals based on their activities. 

Educational platforms like VLEs do not have the sophistication of Facebook's personalisation algorithms, although of course there is a lot of effort going in to trying to make this work. They are cruder CMS systems, displaying content according to particular organisational groups - e.g. modules, classes, programmes, etc. 

But saying all these systems are the same is to say that their basic architecture is the same: there is a server which acts as a repository of stuff contributed by teachers and (sometimes) students. Access to the system is controlled by an individual's account - their username and password. Activities too are tied to the individual. Although some systems allow for group activities in various ways, such group activity is really a different coordination of individual people, and a different presentation of content. 

But what is happening here? When we talk about "content" we are basically talking about "documents". A web-page is a document, a personalised feed in Facebook is a document, an assignment is a document... Who controls the documents when they're on the platform? 

This blog post is a document which I am writing and clearly I control what it says. Most blog posts are not collaborative efforts, they are individual and personal. When individuals publish things, they are mined for whatever information Google might find useful to sell stuff to other individuals. Obviously I have no control over this.

A lot of social media feels like an "Ego machine" - my thoughts, my documents, my desires feed a market of other individuals' thoughts, documents, desires. But to what extent is it an ego machine because of the systems architecture upon which it sits? If we didn't have servers and personal accounts, could it be different?

The question can be represented visually. The "ego machine" model can be represented as a set of interconnected nodes - individuals - with lines representing communicative acts of some sort. This is a "network model" shown below on the left. But social relationships in real life feel more like a cellular model, shown on the right. Cells are not individuals, they are "dialogues" or "codes of communication" - they might even be "communities of practice" - although I would want to dig into that loaded term...

What social media platforms have done is to overlay a "network model" of communication - which, after all was the simplest architecture for computers - onto a cellular model. The problem is that this excludes the detail of what happens in individual cells. 

Cells are not "nodes". They are active processes with a boundary that separates an "environment" which is negotiated and separated from a set of "internal operations". The collective action of the processes engaging in the environment and the processes maintaining internal states is to maintain the boundary - i.e. to maintain homeostasis with the environment. 

Seeing cells as processes with an inside, an outside, and a boundary presents a set of powerful questions which must be addressed. What are the internal processes doing? What are the external processes (those which engage the environment) doing? What happens at the boundary? More powerfully, these questions can be asked of all cells - including those that constitute the natural world. In the light of this, the network diagrams of social media look very one-dimensional - and I think this is reflected in our experience of the technology. 

Once we start asking questions about cells - whether its questions about cells of communication, or cells in our bodies, questions about "ego" take a back seat. We don't know the locus of consciousness and self - but we do know that it sits on a biological substrate, and that this biological substrate is cellular. We can also point to homologies in cellular processes at different levels of organisation. So the homology between cancer and the pathologies of confirmation bias and the corruption of a political system are telling, or the homology between epigenetic mechanisms at a cellular level, and our communicative practice online are also very powerful.

Moreover, once ego takes a back seat, focus falls not on the viability of individual cells, but on the coherence of the whole. 

That is where our technology needs to take us. I don't think a centralised server-based architecture can deliver this. We need something else. Documents can now be created collaboratively and used as vehicles for dialogue. This is opening the way for individuals to become "inter-mediaries" in document production, rather than authors. Distributing documents for diverse collaborative production is something that Microsoft Teams does very well - which is interesting - but then this technology works on a different technical principle to the  CMS. Can a coordination between different groups producing different documents be created so that some groups can naturally split (mitosis/meiosis) or die (apoptosis), all the time maintaining the coherence of the whole? These are the questions we really need to think about if we are to set ourselves straight for the future. 

Saturday, 19 September 2020

Technology's Future in Education

Looking at the EdTech landscape right now, in the light on the Coronavirus pandemic, it seems that things have settled-down to an established set of tools, where "the future" is mapped-out by the as-yet-to-be-proven technologies of AI and big data. Certainly that is how the doom-sayer critiques of edtech appear to see it. But history often doesn't work out in the way that we imagine, and we've been certain about the way things will work out in the past, only to be surprised by what actually happens.

There are some early indicators among the current crop of technologies that things may change radically once more. The first indicator is the re-emergence of an old tussle between centralised systems like content management systems, and decentralised document distribution systems. 

Many institutions have been refreshing their Virtual Learning Environments, and perhaps the biggest surprise in this "refresh" is quite how little has changed in 20 years. The VLE is really a content management system that manages people, content and activities together. As a centralised management system, it provides students with very little that they can do for themselves: all the functionality is focused on the management of students and the allocation of resources. For this reason, the UK name "Virtual Learning Environment" is at least less misleading than the US "Learning Management System". But in truth, these systems are neither "learning environments" nor systems for "learning management". They are administration systems which help keep track of the transactions of learning. 

 But at the same time as institutions have been refreshing the VLE, they have also invested in Microsoft Teams for real-time virtual classrooms. Now, Microsoft have an interesting history in groupware, where they have experimented with CMS systems, and with document distribution systems. Their Microsoft Office Groove system from about 2007 allowed for the peer-to-peer sharing of documents both online and offline, although they abandoned this when they put their weight behind Sharepoint. 

But it seems that the document distribution model is back with Teams, and particularly with the Teams Class Notebook. The Teams Class Notebook is a document distribution system where the OneNote notebook is divided into sections, some of which are solely controlled by teachers, some of which are controlled by individual learners, and some which can be edited as shared documents in real-time (like GoogleDocs). Teachers can create resources and "push" them out to learners, so that learners then take ownership of the documents, can customise them and organise them to suit their own purposes. Teams uses its messaging infrastructure to drive the communication and coordination process between all the student notebooks so that the teacher can keep track of what everyone is doing.   

It's rather reminiscent of Liber and Olivier's Colloquia VLE from the late 90s, where documents and activities were distributed through emailed zipped IMS Content Packages. Teams does the same thing, but has replaced email with their technology, and the Content Packages with the OneNote file specification. 

However, there are some advantages that Colloquia had over the current Teams Class Notebook. Being completely peer-to-peer meant that students could create their own groups and classes and distribute resources independently of the teacher. In Teams, this wouldn't be easy to do as things stand (everyone would have to be a "teacher") - but it is something that I'm sure people will experiment with. And then there is the issue that Teams is tightly integrated into the institution's IT infrastructure, and that including people from outside the organisation presents a large number of barriers. 

My guess is that Teams Class Notebook will inspire people to think differently about technology once more - we don't need big Content Management Systems for Education; we need distribution mechanisms which can be coordinated by teachers and learners. That's important not just for education. The CMS model dominates almost all web platforms - Facebook is the classic example. But if Facebook worked as a document distribution model, it would be very different. 

The difference, I believe, may lie in the way that individuals taking control of their own resources can promote the making of personal meaning and connections between things. At the moment, our meaning-making processes are beholden to algorithms presenting new stuff to us all the time, often trying to sell us stuff. But if we could share documents by distributing them and accepting distributed documents from people we trust then making our own connections within our personal collections can deepen the way in which we process information and think about the world. 

I wouldn't be surprised to see some kind of convergence between new forms of edTech and new forms of Social Software in the coming years. Institutions of education are going to have to adapt to this stuff. If the making of personal connections and personal meaning becomes the focus rather than simply "swimming in information", then the central question will become "What do institutions do to help individuals make sense of their technical environment?" Is AI going to help there? I doubt it - at least not in the Golem-like way we currently conceive of it.  

Tuesday, 8 September 2020

Beyond the USS Pension Fund Collapse

There is a certain air of relief in UK universities that they have students - albeit a much reduced intake from overseas. However, nobody is relaxed about the future. The UK higher education system is oscillating like Tacoma Bridge: it is experiencing violent shocks both internally and externally (this has been happening since before the pandemic), and it is reacting to each of these shocks in a way that reveals that both our institutional structures and our compass are broken. 

The latest shock is the unsurprising revelation that the USS pension scheme - already in trouble - is now in such trouble that anyone looking at it might reach the conclusion "is it worth it? do we quit and invest money elsewhere?" That's very dangerous for a pension scheme. It's difficult to know the larger-scale effects of this, but it is almost certain to make working in HE in the UK unattractive.

There is no question that the marketised universities have exploited labour - particularly of temporary/hourly-paid staff. The union response to this, compacted by the pension issue, may be come to be seen as a warning for what is about to come. Although I had very mixed feelings about the strikes, when we stop listening to each other (which was one of the factors that led to it), serious trouble is always around the corner.

In the  final analysis, the question to ask when things seem to be shaking themselves to bits, is What's it all about?, Why do send our kids to university? The conventional wisdom (if you can call it that) among many management teams has been "we're businesses - it's about making money". This attitude, promoted by government, is directly responsible for the extent to which things risk falling apart now. It will be seen to be a classic case of the dangers of having a poorly inspected ontology. More importantly, it will be seen to be a warning that no senior manager of Higher Education can afford not to understand the importance of a grasp of the deep reality of education (how many managers even understand what "ontology" means?). Unfortunately, both sides in the industrial action suffered the same problem. 

A grasp of the deep realities of education requires thought and reflection. It requires a university to think about what a university is. This task is exactly the same as finding (or refinding) one's compass. Having said this, the lack of reflection has resulted from deeply embedded political interference in universities which has pushed them towards a market model. It has also jeopardised the personal security that all of us hope for towards the later stages of life.

A deep reflection on the realities of education cannot now exclude technology. Technology, in many ways, occupies much of the same territory as education: communication, collaboration, coordination of intellectual activity, construction, etc. Like universities, its ontology is poorly understood, but tech firms are not universities. Because they really are businesses, they have been seduced by marketised universities as opportunities to make large sums of cash. But at its root, technology is simple and (to a large extent) free. What has been missing are the dispositions to engage with it creatively and intellectually. While the pandemic has brought much crashing down, this creative and intellectual engagement with technology has been transformed, and things will not be the same again. It is noticeable that much of that creative technological engagement has featured retired professors, who - thanks to their generous pensions - can afford to make valuable contributions.

In many ways - although it certainly doesn't feel like it - our present crisis is caused by an embarrassment of  riches.  Our problem is not only deciding which way to go when there are so many options, but in remembering why we are travelling. To make universities rich? No. To pass on sufficient wisdom, memory, foresight and capability to the next generation so that they can negotiate the future? That must be it, mustn't it? So the possible collapse of the pension fund doesn't just indicate an immediate (or impending) loss of cash. It indicates that our values were misplaced. 

Universities must be viable and effective. To do so, their members - students, teachers, managers, must feel secure and able to think creatively, believing what they do is meaningful and makes the most of their intellectual talents. Right now, nobody feels secure in universities - partly because we are all - of whatever political persuasion, influenced by the illusions of market capitalism. This risks causing a debilitating intellectual malaise which will exacerbate the crisis. That is most likely to manifest in more industrial action. 

This is the point where intellectual authority is required - so desperately lacking from the present government. Only "health and quiet breathing" can create the unity between a deep understanding of the social necessity for higher education, the nature of technology, and the viable institutional model which can nurture and sustain it.

Friday, 4 September 2020

More on the Alternative Natural Philosophy Association: What online learning was meant to be!

 We've just finished the 4th week of the Alternative Natural Philosophy Association conference... It feels like a marathon - but what an amazing set of talks! You can see them all here: http://anpa.onl/media/anpa-41-web-conference/. Overall, over 60 people have attended from all over the world - which is a number of attendees not seen since ANPA was founded in Cambridge 41 years ago. 

The level of depth of engagement, the level of mutual listening to one another, the variety of the presentations, it's all been extraordinary. Everyone says how amazing the impact of the technology is on the discourse. This is what online learning should always have been! We missed it because the community making the noise in online learning were the online educators - and they were not the most important people. 

In universities, the important people have always been the intellectual experts and deep thinkers within their own disciplines. The best of them would always think beyond their disciplines and listen to everything - and we've got many of the best of them in ANPA. It's also worth saying that because of the marketisation of education, these people have been oppressed within the university. Talking about the foundations of physics, or the connection between biology and consciousness became harder and harder in a transaction-driven system that was focused on certifying students and making money. The problem is that  all that transactional stuff is bloody boring. 

Covid is producing many changes, not least in the fact that the elders are now on Zoom. But more importantly, the closure of the campus has exposed the transactional nature of university learning as deeply deficient. Intellectual depth and real interpersonal connection will be essential for the university's survival in the future. As I've argued previously (and about to publish in Postdigital Science and Education), the transaction-driven model of marketised education relied on the campus to soften the blow of the outcome-driven educational process. The campus was a kind of biological surrogate.

With the campus gone (and yes, another lockdown is likely, isn't it?), a new balance must be struck. 

John Torday's presentation to ANPA provides what I think is an explanatory framework for what is happening to us. Our epigenetic environment has been transformed by Covid-19. Now is the time to rethink the biological foundations of our learning theory - particularly in the light of technology. It is, fundamentally, to rethink Piaget's genetic epistemology and Papert's constructivism (which drew heavily on Piaget)



My presentation was connected to this. I talked about "ontological theatre" of cybernetics (and Pask's involvement in ANPA has been a revelation to me), and the connection to David Bohm's idea that theory was a "theatre of the mind", and to think about what happens when minds come together.



This was Bohm's vision of a scientific dialogue: a tuning-in together of many brains operating thought together. It was also Stafford Beer's idea of "many brains thinking as one brain". My talk took in fractals, anticipation, a doodling program which I wrote, Rachmaninov's Corelli Variations and John Cage. It was fun!

But there have been so many talks - all of which will now receive new audiences for years to come. Mike McCulloch's propulsion mechanism explained with "information loss" was perhaps the most astonishing, but there were so many others, including beautiful artistic images from John Hyatt and Lynnclaire Dennis, or Andrew Crompton designing dice, or David McGoveran's wonderful overview of ANPA history in the US, or striking mathematical work drawing on quaternions from Doug Matzke and Mike Manthey.

And there's another 2 weeks to go!